Precalculus

10-03 Arithmetic Sequences and Series

Arithmetic Sequence

- Common \qquad (d)
- $3,7,11,15,19, \ldots$

Rule for the $\boldsymbol{n}^{\text {th }}$ term

$$
a_{n}=d n+c
$$

Where $c=a_{1}-d$

$$
a_{n}=a_{1}+(n-1) d
$$

Find the rule for the $n^{\text {th }}$ term for $3,7,11,15,19, \ldots$

The $8^{\text {th }}$ term of an arithmetic sequence is 25 , and the $12^{\text {th }}$ term is 41 . Write the rule for the $n^{\text {th }}$ term.

Recursive Rule for Arithmetic Sequences

$$
\begin{gathered}
a_{1}=a_{1} \\
a_{n}=a_{n-1}+d
\end{gathered}
$$

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Find the sum of the integers 1 to 57.

Find the $50^{\text {th }}$ partial sum of the arithmetic sequence $-6,-2,2,6, \ldots$

Evaluate
$\sum_{i=1}^{100}(3 i+2)$

